Continuous Purifications in Multistep Continuous Flow Synthesis of Pharmaceutical Compounds

Róbert Örkényi^{1,2*}

¹ Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary ² RotaChrom Technologies LLC. H-2370 Dabas, Hungary, robert.orkenyi@rotachrom.com

RotaChrom Perpetual Innovation

F

Introduction – Continuous flow purifications

Flow synthesis is usually followed by discontinuous purification, because of the fact, that the number of available continuous solutions is limited.^[1–3] The existing methods^[4,5] can be classified as in-line work-up or final product purification techniques, according to the position in a multistep sequence, where they are preferably used. Most of the in-line work-up steps aim to remove the co-products, which are formed from the reagent in the course of the planned process.^[6] These impurities should not be mixed up by the by-products, which are structurally related to the desired product, but their formation is the consequence of undesired side reactions. In-line work-up can be achieved by filtration of solid co-products, liquidliquid phase separation, gas-liquid phase separation or through the use of solid phase supported scavengers. After the final synthetic step, the API has to be purified to meet the standards of regulatory agencies. The enumerated separation techniques, which could be used between intermediate steps, are not adequate by themselves for this goal.

High purity can be achieved by using multicolumn chromatography,^[6] simulated moving bed (SMB) chromatography,^[6,7] crystallization^[8–10] or recrystallization,^[10,11] although the latter two usually require semi-batch processing. Purification of final product could also be aided by catch and release chromatographic methods^[12–14] or salt formation – neutralization sequence using multiple-extraction steps.^[10]

 $A + B \rightarrow P + C$ (Co-product)

 $A + B \rightarrow P + P' + P'' + \dots + P^n$ (By-product)

7.

Summary

	•		eaci	on usin	ig pur	pose i	built reacto	Dr						
	Entry [Ref.]	Solv.	Т (°С)	V _{loop} (mL)	t _{res} (min)	p _{BPR} (bar)	Select. (%) 3a:3b:3c	Yield (%)	Reactor tubing	r Cr	Crude reaction m compositio			
	1[6]	EtOH	100	Vapor-	10 10	8 8	74:13:13 ^a 92:5:3 ^a	96 ^a				GC	MS (%)
	2[6]	THF	165	tech (R2/R4)				98 ^a	N.A.	Av. ^b 8	4a 31.5	4b 4c 5.4 12.	; by 3	-pro 0.8
	3			30	10		84:7:9 ^b	94 ^c	1/8"	Dev.	1.8	0.3 1.4	1	0.8
	4	EtOH	100	5	10	10 10 10	90:7:3 ^d	-	1/16"	a Using	30 n	nm 10% 1 ml/mi	ο Pd/(n· b Δ	C C
	5			1	10		92:4:3 ^d	-	1/16"	12 (over 30 hours period				vara
	6			1	10	8	89:6:5 ^d	-	chip ^e					
	yield; ° S d GC-MS	isola S (%); ^e w P l	ted yiel /hite pro Jrif	d of the <i>or</i> ecipitate (m icati	to-, para norpholin ON V	a- and di-s ne-hydrofi Nith	substituted compluoride).	pounds;	C	~81% 4a	afte	er the t	WO-S	ster
	Choosi	ing th	ie ap	opropria	ite so	olvent	system	in	<i>n</i> -H	ex:MTBE	:Et	OH:H	2 0	= ′
	Choosi CPC is	ing th s like (ie ap choos	opropria sing the	ite so e conv	olvent vinient	system column an	in Ind	<i>n</i> -H	ex:MTBE 4a	:Et	OH:H 4b	2 <mark>0</mark>	= ^
	Choosi CPC is eluent	ing th s like of for H	ie ap choos HPLC	opropria sing the chron	ite so e conv natog	olvent vinient raphy.	system column an <i>K</i> can b	in id id id	<i>п</i> -Н р <i>К</i> _а а	ex:MTBE 4a 3.51	:Et	OH:H 4b 3.93	₂ 0 }	= '
	Choosi CPC is eluent determ and lo	ing th s like of for H ined l wer p	ie ap choos HPLC by th phase	opropria sing the chror e ratio conce	te so conv natog of th entratio	olvent vinient raphy. ie ana on, wl	system i column an <i>K</i> can b lyte's uppe hich is in	in id be er a	л-Н рK _a a рK _a b	ex:MTBE 4a 3.51 4.08±0.01	5 4	OH:H 4b 3.93 .06±0.	₂ 0 3	= '
	Choosi CPC is eluent determ and lo directly	ing th s like a for H ined I wer p v pro	e ap choos HPLC by th phase portic	opropria sing the chror ne ratio e conce onal r	te so conv natog of th entration	olvent vinient raphy. ie ana on, wl	system column an <i>K</i> can b lyte's uppe hich is in with the	in id be er a sir F	рК _а а рК _а а рКа ^ь W (Da)	ex:MTBE 4a 3.51 4.08±0.01	5 4	OH:H 4b 3.93 .06±0. 196.2	22	
	Choosi CPC is eluent determ and lo directly correst	ing th s like of for H ined I wer p v pro	e ap choos HPLC by th phase portion	opropria sing the chron e ratio e conce onal r oeak a	ite so conv natog of th entration elation	olvent vinient raphy. ie ana on, wl on, wl nship of t	system column an <i>K</i> can b lyte's uppe hich is in with the he GC-M	in id id er a sir S	рК _а а рК _а b W (Da)	ex:MTBE 4a 3.51 4.08±0.01 196.22 1.32	5 4	OH:H 4b 3.93 .06±0. 196.2 1.32	029	
	Choosi CPC is eluent determ and lo directly corresp measu	ing th s like of for H ined I wer p wer p ondin remer	e ap choos HPLC by th phase portion ng p nts.	opropria sing the chron e ratio e conce onal r oeak a	ite so conv natog of th entration elation reas	olvent vinient raphy. ie ana on, wl on, wl nship of t	system i column an <i>K</i> can b lyte's uppe hich is in with the he GC-M	in id in e e r a sir F S G	<i>n</i> -H p <i>K</i> _a ^a p <i>K</i> _a ^b W (Da) logP ^a PSA ^{a,c}	ex:MTBE 4a 3.51 4.08±0.01 196.22 1.32 38.49	5 4	OH:H 4b 3.93 .06±0. 196.2 1.32 38.4	22 9	
	Choosi CPC is eluent determ and lo directly corresp measu <u>By rule</u>	ing th s like of for H ined I wer p v pro condin remen	e ap choos HPLC by th ohase oportion ng p nts. <u>umb:</u>	opropria sing the chron e ratio e conce onal r oeak a	te so conv natog of th entration elation reas	olvent vinient raphy. ie ana on, wl nship of t	system column an <i>K</i> can b lyte's uppe hich is in with the he GC-M	in id e er a sir S F	pK_a^a pK_a^a pK_a^b W (Da) $\log P^a$ $PSA^{a,c}$ $K_{U/L}^d$	ex:MTBE 4a 3.51 4.08±0.01 196.22 1.32 38.49 1.86	5 4	OH:H 4b 3.93 .06±0 196.2 1.32 38.4 0.49	22 2 9	

References

2017, *25*, 6180–6189.

- F. J. Agostino, S. N. Krylov, TrAC Trends Anal. Chem. 2015, 72, 68-79. P. Bana, R. Örkényi, K. Lövei, Á. Lakó, G. I. Túrós, J. Éles, F. Faigl, I. Greiner, Bioorg. Med. Chem.
- [11] J. M. C. M. Monbaliu, T. Stelzer, E. Revalor, N. Weeranoppanant, K. F. Jensen, A. S. Myerson,
- Org. Process Res. Dev. 2016, 20, 1347-1353.
- [12] J. Hartwig, A. Kirschning, Chem. A Eur. J. 2016, 22, 3044–3052.

[13] I. R. Baxendale, C. Hornung, S. V. Ley, J. de M. M. Molina, A. Wikström, Aust. J. Chem. 2013, 66, R. Örkényi, J. Éles, F. Faigl, P. Vincze, A. Prechl, Z. Szakács, J. Kóti, I. Greiner, Angew. Chemie Int. Ed.

We present for the first time, that centrifugal partition chromatography in multiple dual-mode is an effective method for

the final product purification of continuous flow reactions. Continuous purification could be achieved by using continuous injection of the feed at an intermediate point of the series of extraction cells \rightarrow True Moving Bed. In the absence of two CPC columns, only semi-continuous purification is available by synchronizing the flow reactor production with the MDM sequence sample intake. In this case productivity can be increased by using one-phase sample 'injection'. One of the main benefits of this method is that it can be easily scaled up.^[19]

R.Ö. would like to thank Gedeon Richter Talent and Pro Progressio Foundation for financial support. Gyula Beke, György Tibor Balogh, Zoltán Szakács, János Kóti, Péter Vincze, Anita Prechl, Márta Sipos Meszlényiné, Judit Müller, Árpád Könczöl, Gábor Meszlényi and Eszter Riethmüller for their help, Tamás Patócs for his work on literature background, Ildikó Balogh for technical help, and to all member of our flow chemistry work team, especially Péter Bana and Klára Lövei.

2017, *56*, 8742–8745. 131. [4] F. Darvas, G. Dormán, M. Fekete, *Flow Chemistry: Volume 2 Applications*, De Gryter, Berlin, **2014**. [5] S. V. Ley, D. E. Fitzpatrick, R. J. Ingham, R. M. Myers, Angew. Chemie - Int. Ed. 2015, 54, 3449–3464. *Lett.* **2013**, *54*, 6090–6093 [6] S. S. Kobayashi, Chem. - An Asian J. 2016, 11, 425–436. A. G. O'Brien, Z. Horváth, F. Lévesque, J. W. Lee, A. Seidel-Morgenstern, P. H. Seeberger, Z. Horváth, F. [16] S. A. Oelmeier, C. Ladd-Effio, J. Hubbuch, J. Chromatogr. A 2013, 1319, 118–126. Lévesque, J. W. Lee, A. Seidel-Morgenstern, et al., Angew. Chemie - Int. Ed. 2012, 51, 7028-7030. [8] S. Mascia, P. L. Heider, H. Zhang, R. Lakerveld, B. Benyahia, P. I. Barton, R. D. Braatz, C. L. Cooney, J M. B. B. Evans, T. F. Jamison, et al., Angew. Chemie - Int. Ed. 2013, 52, 12359–12363. [9] S. Borukhova, T. Noël, B. Metten, E. de Vos, V. Hessel, E. Devos, V. Hessel, ChemSusChem 2013, 6, 2220-2225.

[10] A. Adamo, R. L. Beingessner, M. Behnam, J. Chen, T. F. Jamison, K. F. Jensen, J.-C. M. C. J.-C. M. Monbaliu, A. S. Myerson, E. M. Revalor, D. R. Snead, et al., Science (80). 2016, 352, 61-67.

[14] L. Tamborini, D. Romano, A. Pinto, M. Contente, M. C. Iannuzzi, P. Conti, F. Molinari, *Tetrahedron* [15] J. B. Friesen, J. B. McAlpine, S. N. Chen, G. F. Pauli, J. Nat. Prod. 2015, 78, 1765–1796. [17] C. Armein, "Introduction to Centrifugal Partition Chromatography CPC/CCC," can be found under http://www.armen-instrument.com/downloads/Armen-Introduction-CPC-CCC.pdf, n.d. [18] E. Delannay, A. Toribio, L. Boudesocque, J.-M. Nuzillard, M. Zèches-Hanrot, E. Dardennes, G. Le Dour, J. Sapi, J.-H. Renault, J. Chromatogr. A 2006, 1127, 45-51. [19] L. Lorántfy, L. Németh, Novel Type of Extraction Cell for a Centrifugal Partition Chromatograph, as Well as a Centrifugal Partition Chromatograph Containing Such an Extraction Cell, 2016, WO2016055821

